
What are your best estimates? Are you close?
Estimation:  What are your best estimates (of the unknown parameters)? 

• LUEs and BLUE (minimum variance in the class of LUEs) 

• So far:  No distributional assumptions (e.g. Normal Distribution). 

Inference:  Are you sure/close? 

• How close are your parameter estimates to the true underlying parameters? 

• Generally:  Need to make distributional assumptions to proceed. 

• Focus on the two main tools of inference 

 Confidence Intervals:  Interval estimators 

 Hypothesis Testing:  Can you (confidently) reject the Null Hypothesis? 
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The Tools of Inference
Confidence Intervals  

• Confidence intervals provide an interval estimate of the true parameter value. 

• Some high percent (95%?) of the interval estimates generated in some fashion will in fact 
contain the true unknown parameter value. 

• But is the true parameter contained in the specific interval you are looking at?  No idea!... but 
we do know that some high percent (95%?) of the interval estimates generated this way…   

II:  Hypothesis Testing 

• Is the true (unknown) parameter zero?  (this will be the #1 Null Hypothesis for us) 

• Your point estimate is very very far from zero.  But maybe you just have had a really wacky 
unrepresentative sample, and the true underlying parameter is in fact zero.  That is always a 
possibility… but is it probable?  How probable? 

• Less than say 5% probable?   

 Then OK, we reject the Null Hypothesis that the true parameter is zero at the 5% 
significance level.  

 And we say that our estimate is statistically significant at that level.  We could be wrong… 
but that is not at all likely!  But for sure, it won’t happen very often! 2



Distributional Assumptions: Generally required to do Inference

Not necessary for Estimation:  

• We made no distributional assumptions in showing 
that the Sample Mean was BLUE. 

But generally required to do Inference 

• We typically assume Normal distributions.  You can 
of course work with other distributions… but you have 
to start somewhere, and why not begin with an 
assumption of Normality?  
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Estimating the Mean of the Distribution, cont’d

Sampling and estimating:  Let's return  to estimating the mean of the distribution of Y. 

• You have an iid random sample { }1 2, , nY Y Y  from the distribution of Y, which has unknown 
mean, µ . 

• You are using the BLUE sample mean estimator, 
1

iY Y
n

= ∑ , to estimate µ . 

 ( )E Y µ=  and ( )
2

Var Y
n
σ

= , where 2σ  is the variance of Y.   

 Since we've made no distributional assumptions yet, the particular nature of the 

distribution of Y (or of 
1

iY Y
n

= ∑ ) is as yet unknown.   
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Distributional Assumption: Assume a Normal distribution

• Assume that Y is Normally distributed, so that Y  (and the iid 'iY s ) are all 2( , )µ σΝ  

• Since 2( , )iY n nµ σΝ∑  , Y  is Normally distributed: 
21 ( , )iY Y

n n
σµ= Ν∑   

• The sample mean estimator, Y , has mean µ , variance 
2

n
σ

, and standard deviation 

( )sd Y
n
σ

= . 

• Put differently: 
( )/

Y YZ
sd Yn

µ µ
σ

− −
= =  has the standard Normal distribution, ~ (0,1)Z N . 
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Confidence Intervals I:  Known variance  

• Start with an unrealistic example:  The variance of Y, 2σ , is known. 

• Here's a symmetric (confidence) interval estimator:   

 ,Y c Y c
n n
σ σ 

− + 
 

, where 0c ≥  is some pre-specified critical value.   

 In words:  This Confidence Interval is the Sample Mean, plus or minus c standard 
deviations of Y , ( )sd Y : [ ]CI est c stdevs= ±   

• Observations: 

 The only random component in this interval estimator is Y , since n and the variance 2σ  
are known, and c is pre-specified.   

 The interval will shift around depending on Y , the Sample Mean around which it is 

centered, and with a constant width of 2 .c
n
σ
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Confidence Intervals I:  Known variance, cont’d
• The probability that this random interval estimator contains the unknown mean µ  is 

,prob Y c Y c prob Y c
n n n
σ σ σµ µ

      
∈ − + = ∈ ±      
      

 = 
/

Yprob c c
n
µ

σ
 −
− ≤ ≤ 
 

 

• Since ~ (0,1)
/

Y Z N
n
µ

σ
−

= , this is ( )(0,1)prob c N c− ≤ ≤  

• For a given level of confidence, this allows us to set the 
critical value c: 

 90% Confidence Interval:   1.64Y
n
σ 

± 
 

 

 95% Confidence Interval:   1.96Y
n
σ 

± 
 

 

• A Good Rule of Thumb:  … the 95% confidence interval is the Sample Mean +/- about two 
standard deviations. 

critical val. c p(-c<Z<c) p(-c<Z<c) critical val. c
1.5 86.6% 89% 1.60             
1.6 89.0% 90% 1.64             
1.7 91.1% 91% 1.70             
1.8 92.8% 92% 1.75             
1.9 94.3% 93% 1.81             

2 95.4% 94% 1.88             
2.1 96.4% 95% 1.96             
2.2 97.2% 96% 2.05             
2.3 97.9% 97% 2.17             
2.4 98.4% 98% 2.33             
2.5 98.8% 99% 2.58             
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Confidence Intervals II:  The variance of Y is now unknown

• Since we don’t know 2σ , we don’t know ( )sd Y
n
σ

=  … which makes it difficult to 

construct the Confidence Intervals we just considered. 

• But the sample variance, 2 21 ( )
1Y iS Y Y

n
= −

− ∑ , is an unbiased estimator of 2σ . 

• And so 
2
YS
n

 will be an unbiased estimator of  ( )
2

Var Y
n
σ

= . 

• Taking the square root, we have YS
n

 as an estimator of the standard deviation of Y .   
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The Standard Error

• We call ( ) YS
se se Y

n
= =  the standard error (se) of the sample mean estimator… it's an 

estimate of ( )sd Y
n
σ

= , the standard deviation of the (Sample Mean) estimator. 

• Again:  The standard error of Y , ( )se Y , provides an estimate of the standard deviation 

of Y , ( )sd Y . 
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t Distributions and Standard Errors
 

• If Y is normally distributed, then (0,1)
/

Y Y N
sdn

µ µ
σ

− −
=  . 

• Now replace/estimate σ  with YS … so we have the 

estimator:  
( ) /Y

Y Y
se Y S n

µ µ− −
= . 

• This estimator will have a (Student's) t distribution with n-1 

degrees of freedom.  So 1/ n
Y

Y t
S n

µ
−

−
 .   

• The Student's t distribution was developed by William Sealy 
Gosset. in the early 1900's.  At that time he was an employee 
(chemist and statistician) of Arthur Guinness & Son, the 
brewery in Dublin, Ireland.   
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The t distribution looks a lot like the Normal distribution
• Here are the density functions for three t distributions, with dof’s = 1, 5 and 99.  Notice that 

the density function is symmetric and bell-shaped, and centered around 0.  As the dofs 
increase, probability shifts from the tails to the middle of the distribution.  In the limit, and as 
dofs approach infinity, the t distribution approaches (0,1)N . 
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The Cornerstone of Inference: The t statistic

The Cornerstone of Inference:  The t statistic 

• 
/Y

Y
S n

µ−
 is sometimes called the t-statistic, and it drives inference (when using the Sample 

Mean to estimate the unknown mean, and the variance is unknown). 
• Worth repeating!  The t statistic drives inference!... and it has a t distribution with n-1 dofs. 
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Critical Values (with unknown variance) 

• Here's a symmetric (confidence) interval estimator:  ,Y YS S
Y c Y c

n n
 

− + 
 

 or YS
Y c

n
 

± 
 

 

0c ≥  is a "critical" value, determined using the t distribution with n-1 dofs. 

• As before, and after some algebra ( 1nt −  is a t distribution with n-1 dofs): 

,
/

Y YS S Yprob Y c Y c prob c c
n n n

µµ
σ

   − 
∈ − + = − ≤ ≤    
    

( )1nprob c t c−= − ≤ ≤ . 

• Given level of confidence and #dofs, we set the critical value c using the 1nt −  distribution. 

13



The Cornerstone of Inference: The t statistic, cont’d
• Before we had: [ ]CI est c stdevs= ± … now we have: [ ]CI est c sterrs= ±  

• 90% Confidence Interval 

 #dofs = 25:  1.71 YSY
n

 
± 

 
 

 #dofs = infinite, N(0,1):  1.64 YSY
n

 
± 

 
 

• 95% Confidence Interval 

 #dofs = 25:  2.06 YSY
n

 
± 

 
 

 #dofs = infinite, N(0,1):  1.96 YSY
n

 
± 

 
 

• Good Rule of Thumb:  For a 95% confidence interval, use the sample mean ±  a couple 
standard errors.  We'll use the same rule when you get to SLR and MLR analyses. 

dofs 90.0% 92.5% 95.0% 97.5% 99.0%
5 2.02  2.24  2.57  3.16  4.03  

10 1.81  1.99  2.23  2.63  3.17  
15 1.75  1.91  2.13  2.49  2.95  
20 1.72  1.88  2.09  2.42  2.85  
25 1.71  1.86  2.06  2.38  2.79  
30 1.70  1.84  2.04  2.36  2.75  
50 1.68  1.82  2.01  2.31  2.68  
75 1.67  1.81  1.99  2.29  2.64  

100 1.66  1.80  1.98  2.28  2.63  

infinite 1.64  1.78  1.96  2.24  2.58  
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