What are your best estimates? Are you close?

Estimation: What are your best estimates (of the unknown parameters)?
e LUEs and BLUE (minimum variance in the class of LUES)
e So far: No distributional assumptions (e.g. Normal Distribution).
Inference: Are you sure/close?
e How close are your parameter estimates to the true underlying parameters?
e Generally: Need to make distributional assumptions to proceed.
e Focus on the two main tools of inference
= Confidence Intervals: Interval estimators

» Hypothesis Testing: Can you (confidently) reject the Null Hypothesis?
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The Tools of Inference

Confidence Intervals
e Confidence intervals provide an interval estimate of the true parameter value.

e Some high percent (95%7?) of the interval estimates generated in some fashion will in fact
contain the true unknown parameter value.

e Butis the true parameter contained in the specific interval you are looking at? No ideal... but
we do know that some high percent (95%7?) of the interval estimates generated this way...

I: Hypothesis Testing
e |sthe true (unknown) parameter zero? (this will be the #1 Null Hypothesis for us)

e Your point estimate is very very far from zero. But maybe you just have had a really wacky
unrepresentative sample, and the true underlying parameter is in fact zero. That is always a
possibility... butis it probable? How probable?

e Less than say 5% probable?

= Then OK, we reject the Null Hypothesis that the true parameter is zero at the 5%
significance level.

= And we say that our estimate is statistically significant at that level. We could be wrong...
but that is not at all likely! But for sure, it won’t happen very often!



Distributional Assumptions: Generally required to do Inference

Not necessary for Estimation:

e We made no distributional assumptions in showing
that the Sample Mean was BLUE.

But generally required to do Inference

e We typically assume Normal distributions. You can
of course work with other distributions... but you have
to start somewhere, and why not begin with an
assumption of Normality? IoiwEr
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Estimating the Mean of the Distribution, cont'd

Sampling and estimating: Let's return to estimating the mean of the distribution of Y.

e You have an iid random sample {Yl,YZ, ...Yn} from the distribution of Y, which has unknown
mean, i .

. _ - 1
e You are using the BLUE sample mean estimator, Y = ZY , to estimate L .
n

2

= E (Y_) = u and Var (Y_) = O-? , where & is the variance of Y.

= Since we've made no distributional assumptions yet, the particular nature of the

— 1
distribution of Y (or of Y = —ZYi ) is as yet unknown.
n




Distributional Assumption: Assume a Normal distribution

Assume that Y is Normally distributed, so that Y (and the iid Y;'s) are all N(x, )

2
Since ZYi ~N(ng,no?), Y is Normally distributed: Y = iZ:Yi ~ N(,u,g—)
n n

2
: va : o L
The sample mean estimator, Y , has mean u, variance —, and standard deviation

n
— o
sd(Y )=—=.
(7)=-2
Put differently: Z = Yo u — L ¥ has the standard Normal distribution, Z ~ N(0,1).
O / \/ﬁ Sd (Y) 68-95-99.7 Rule
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Confidence Intervals I: Known variance

Start with an unrealistic example: The variance of Y, o, is known.

Here's a symmetric (confidence) interval estimator:

— o o . . ..
. {Y —Cc—,Y + C—} , where € >0 is some pre-specified critical value.

Jn' o Wn

= |nwords: This Confidence Interval is the Sample Mean, plus or minus c standard
deviations of Y , sd (Y_) : Cl = [est +C StdeVS]

Observations:

= The only random component in this interval estimator is Y , since n and the variance c°
are known, and c is pre-specified.

» The interval will shift around depending on Y , the Sample Mean around which it is

. _ o
centered, and with a constant width of 2Cc —.
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Confidence Intervals I: Known variance, cont’d

The probability that this random interval estimator contains the unknown mean  is

prob(ye{Y—c\/Gﬁ,YJrcjﬁD: prob(ye{Yic\/GﬁD = prob(—cg ;/_\/% gcj

G/\/_

For a given level of confidence, this allows us to set the  critical val. ¢ p(c<z<c)  p(c<z<c) critical val. ¢

=Z ~N(0,1), thisis prob(—c<N(0,1)<c)

Since

critical value c: 15| 86.6% 89% 1.60
1.6 89.0% 90% 1.64
— = 1.7 91.1% 91% 1.70
) va 1.8 92.8% 92% 1.75
u 90% Confidence Interval: Y —— 1.9 94.3% 93% 1.81
\/_ 2| 95.4% 94% 1.88
2.1 96.4% 95% 1.96
— 2.2 97.2% 96% 2.05
_ — 2.3 97.9% 97% 2.17
= 9509 Confidence Interval: |Y 1 — 24  98.4% 98% 2.33
\/_ 2.5 98.8% 99% 2.58
A Good Rule of Thumb: ... the 95% confidence interval is the Sample Mean +/- about two

standard deviations.



Confidence Intervals Il: The variance of Y iIs now unknown

" o
Since we don’t know o* ~we don’t know Sd (Y ) = T ... which makes it difficult to
n

construct the Confidence Intervals we just considered.

1 _
But the sample variance, S = —lz (Y, =Y )?, is an unbiased estimator of &°.
n —

And so — will be an unbiased estimator of Var (Y ) =

2 _ o2
n Nn

Taking the square root, we have —= as an estimator of the standard deviation of Y .

Jn



The Standard Error

SY

e Wecall se=-se (Y_) = —— the standard error (se) of the sample mean estimator... it's an
n

— o
estimate of sd (Y ) = 7 , the standard deviation of the (Sample Mean) estimator.
n

e Again: The standard error of Y, se (Y_) provides an estimate of the standard deviation

of Y, Sd(Y_).
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t Distributions and Standard Errors

-4 Y -u
- ~N(0,1).
olJdn  sd (0.1

Now replace/estimate o with S, ... so we have the

If Y is normally distributed, then

Y-u Y-u

se(\?) B S, /Jn

This estimator will have a (Student's) t distribution with n-1

;lu"'tn-r
S, /v/n

The Student's t distribution was developed by William Sealy
Gosset. in the early 1900's. At that time he was an employee
(chemist and statistician) of Arthur Guinness & Son, the
brewery in Dublin, Ireland.

estimator:

degrees of freedom. So

William Sealy Gosset

William Sealy Gosset (aka Student) in 1908

Born

Died

(age 32).
13 June 1876
Canterbury, Kent, England
16 October 1937 {aged 61)
Beaconsfield, Buckinghamshire,
England

Other names Student

Alma mater

Known for

MNew College, Oxford
Student's t-distribution
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The t distribution looks a lot like the Normal distribution

e Here are the density functions for three t distributions, with dof’'s = 1, 5 and 99. Notice that
the density function is symmetric and bell-shaped, and centered around 0. As the dofs
increase, probability shifts from the tails to the middle of the distribution. In the limit, and as

dofs approach infinity, the t distribution approaches N (0,1).
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The Cornerstone of Inference: The t statistic

The Cornerstone of Inference: The t statistic

Y —

y7i
S, /vn

Mean to estimate the unknown mean, and the variance is unknown).
e Worth repeating! The t statistic drives inference!... and it has a t distribution with n-1 dofs.

IS sometimes called the t-statistic, and it drives inference (when using the Sample



Critical Values (with unknown variance)

— S, - S — S
Here's a symmetric (confidence) interval estimator: {Y - CTY,Y + CTY} or {Y +tc—=
n n

Cc >0 is a "critical" value, determined using the t distribution with n-1 dofs.

As before, and after some algebra (1, , is a t distribution with n-1 dofs):

Y —u
rob| uelY —c—L.Y +c—X | |= prob| —¢c < <c|=prob(-c<t ,<c).
ron{ e T e G || vl o< s bt <

Given level of confidence and #dofs, we set the critical value ¢ using the t__, distribution.




The Cornerstone of Inference: The t statistic, cont'd

Before we had: Cl = [est +C StdeVS]

90% Confidence Interval

=  #dofs = 25; {Y +1.71 }

F

» #dofs = infinite, N(0,1):

95% Confidence Interval

Jn

= #dofs = 25: {YiZ.OGSY}

= #dofs = infinite, N(0,1): {Yil.%SY

#

now we have: Cl = [est +C sterrs]

dofs 90.0% 92.5% 95.0% 97.5% 99.0%
of 202 | 224 | 2.5/ 3.16 | 4.03

10) 1.81| 1.99| 2.23| 2.63| 3.17

15) 1.7/5| 1.91 | 2.13| 2.49| 2.95

20 1.72 | 1.88| 2.09| 2.42| 2.85

25 1.71) 1.86| 2.06| 2.38| 2.79

30f 1.70| 1.84| 2.04| 2.36 | 2.75

o0 1.68| 1.82| 2.01| 2.31| 2.68

/5[ 1.67| 181 199| 2.29| 2.64

100) 1.66 | 1.80| 1.98| 2.28| 2.63
infinite| 1.64| 1.78| 1.96| 2.24| 2.58

Good Rule of Thumb: For a 95% confidence interval, use the sample mean *+ a couple
standard errors. We'll use the same rule when you get to SLR and MLR analyses.
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