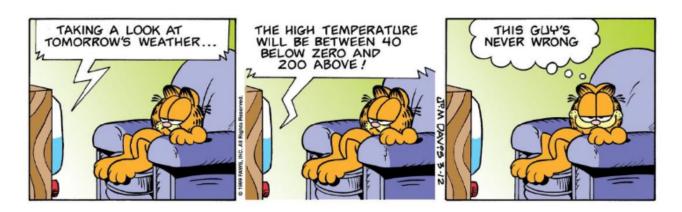
What are your best estimates? Are you close?

Estimation: What are your best estimates (of the unknown parameters)?

- LUEs and BLUE (minimum variance in the class of LUEs)
- So far: No distributional assumptions (e.g. Normal Distribution).

Inference: Are you sure/close?

- How close are your parameter estimates to the true underlying parameters?
- Generally: Need to make distributional assumptions to proceed.
- Focus on the two main tools of inference
 - Confidence Intervals: Interval estimators
 - Hypothesis Testing: Can you (confidently) reject the Null Hypothesis?



The Tools of Inference

Confidence Intervals

- Confidence intervals provide an interval estimate of the true parameter value.
- Some high percent (95%?) of the interval estimates generated in some fashion will in fact contain the true unknown parameter value.
- But is the true parameter contained in the specific interval you are looking at? No idea!... but we do know that some high percent (95%?) of the interval estimates generated this way...

II: Hypothesis Testing

- Is the true (unknown) parameter zero? (this will be the #1 Null Hypothesis for us)
- Your point estimate is very very far from zero. But maybe you just have had a really wacky unrepresentative sample, and the true underlying parameter is in fact zero. That is always a possibility... but is it probable? How probable?
- Less than say 5% probable?
 - Then OK, we reject the Null Hypothesis that the true parameter is zero at the 5% significance level.
 - And we say that our estimate is statistically significant at that level. We could be wrong...
 but that is not at all likely! But for sure, it won't happen very often!

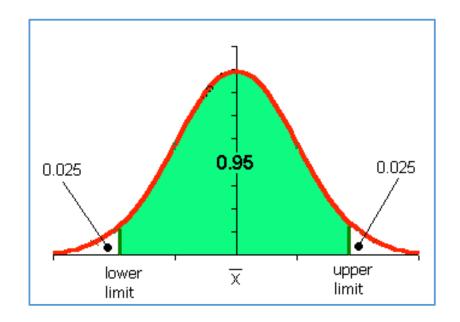
Distributional Assumptions: Generally required to do Inference

Not necessary for *Estimation*:

 We made no distributional assumptions in showing that the Sample Mean was **BLUE**.

But generally required to do Inference

We typically assume *Normal distributions*. You can
of course work with other distributions... but you have
to start somewhere, and why not begin with an
assumption of Normality?



Estimating the Mean of the Distribution, cont'd

Sampling and estimating: Let's return to estimating the mean of the distribution of Y.

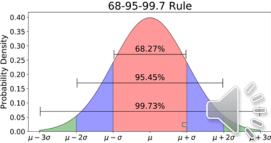
- You have an iid random sample $\{Y_1,Y_2,\dots Y_n\}$ from the distribution of Y, which has unknown mean, μ .
- You are using the **BLUE** sample mean estimator, $\overline{Y} = \frac{1}{n} \sum Y_i$, to estimate μ .
 - $E(\overline{Y}) = \mu$ and $Var(\overline{Y}) = \frac{\sigma^2}{n}$, where σ^2 is the variance of Y.
 - Since we've made no distributional assumptions yet, the particular nature of the distribution of Y (or of $\overline{Y} = \frac{1}{12} \sum Y_i$) is as yet unknown.

Distributional Assumption: Assume a Normal distribution

- Assume that Y is Normally distributed, so that Y (and the iid Y_i 's) are all $N(\mu, \sigma^2)$
- Since $\sum Y_i \sim N(n\mu, n\sigma^2)$, \overline{Y} is Normally distributed: $\overline{Y} = \frac{1}{n} \sum Y_i \sim N(\mu, \frac{\sigma^2}{n})$
- The sample mean estimator, \overline{Y} , has mean μ , variance $\frac{\sigma^2}{n}$, and standard deviation

$$sd(\overline{Y}) = \frac{\sigma}{\sqrt{n}}$$
.

• Put differently: $Z = \frac{\overline{Y} - \mu}{\sigma / \sqrt{n}} = \frac{\overline{Y} - \mu}{sd(\overline{Y})}$ has the standard Normal distribution, $Z \sim N(0,1)$.



Confidence Intervals I: Known variance

- Start with an unrealistic example: The variance of Y, σ^2 , is known.
- Here's a symmetric (confidence) interval estimator:

 - In words: This Confidence Interval is the Sample Mean, plus or minus c standard deviations of \overline{Y} , $sd(\overline{Y})$: $CI = [est \pm c \ stdevs]$

Observations:

- The only random component in this interval estimator is \overline{Y} , since n and the variance σ^2 are known, and c is pre-specified.
- The interval will shift around depending on \overline{Y} , the Sample Mean around which it is centered, and with a constant width of $2c\frac{\sigma}{\sqrt{I_0}}$.

Confidence Intervals I: Known variance, cont'd

• The probability that this random interval estimator contains the unknown mean μ is

$$prob\left(\mu \in \left[\overline{Y} - c\frac{\sigma}{\sqrt{n}}, \overline{Y} + c\frac{\sigma}{\sqrt{n}}\right]\right) = prob\left(\mu \in \left[\overline{Y} \pm c\frac{\sigma}{\sqrt{n}}\right]\right) = prob\left(-c \le \frac{\overline{Y} - \mu}{\sigma/\sqrt{n}} \le c\right)$$

- Since $\frac{\overline{Y} \mu}{\sigma / \sqrt{n}} = Z \sim N(0,1)$, this is $prob(-c \le N(0,1) \le c)$
- For a given level of confidence, this allows us to set the critical value c:

• 90% Confidence Interval:
$$\left[\overline{Y} \pm 1.64 \frac{\sigma}{\sqrt{n}} \right]$$

• 95% Confidence Interval:
$$\overline{Y} \pm 1.96 \frac{\sigma}{\sqrt{n}}$$

critical val. c	p(-c <z<c)< th=""><th>p(-c<z<c)< th=""><th>critical val. c</th></z<c)<></th></z<c)<>	p(-c <z<c)< th=""><th>critical val. c</th></z<c)<>	critical val. c
1.5	86.6%	89%	1.60
1.6	89.0%	90%	1.64
1.7	91.1%	91%	1.70
1.8	92.8%	92%	1.75
1.9	94.3%	93%	1.81
2	95.4%	94%	1.88
2.1	96.4%	95%	1.96
2.2	97.2%	96%	2.05
2.3	97.9%	97%	2.17
2.4	98.4%	98%	2.33
2.5	98.8%	99%	2.58

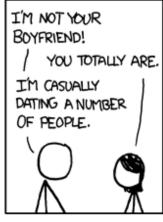
• A Good Rule of Thumb: ... the 95% confidence interval is the Sample Mean +/- about two standard deviations.

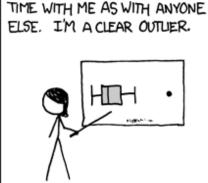
Confidence Intervals II: The variance of Y is now unknown

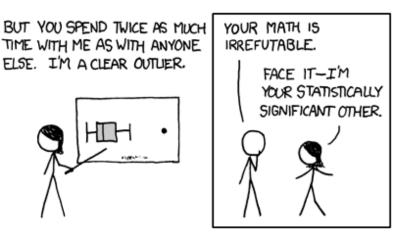
- Since we don't know σ^2 , we don't know $sd(\overline{Y}) = \frac{\sigma}{\sqrt{n}}$... which makes it difficult to construct the Confidence Intervals we just considered.
- But the sample variance, $S_Y^2 = \frac{1}{n-1} \sum_{i=1}^n (Y_i \overline{Y})^2$, is an unbiased estimator of σ^2 .
- And so $\frac{S_Y^2}{n}$ will be an unbiased estimator of $Var(\overline{Y}) = \frac{\sigma^2}{n}$.
- \bullet Taking the square root, we have $\frac{S_{\scriptscriptstyle Y}}{\sqrt{n}}$ as an estimator of the standard deviation of \overline{Y} .

The Standard Error

- We call $se = se(\overline{Y}) = \frac{S_Y}{\sqrt{n}}$ the **standard error** (se) of the sample mean estimator... it's an estimate of $sd(\overline{Y}) = \frac{\sigma}{\sqrt{n}}$, the standard deviation of the (Sample Mean) estimator.
- **Again**: The **standard error** of \overline{Y} , $se(\overline{Y})$, provides an estimate of the **standard deviation** of \overline{Y} , $sd(\overline{Y})$.







t Distributions and Standard Errors

- If Y is normally distributed, then $\frac{\overline{Y} \mu}{\sigma / \sqrt{n}} = \frac{\overline{Y} \mu}{sd} \sim N(0, 1)$.
- Now replace/estimate σ with S_Y ... so we have the estimator: $\frac{\overline{Y} \mu}{se(\overline{Y})} = \frac{\overline{Y} \mu}{S_Y / \sqrt{n}}$.
- This estimator will have a (Student's) t distribution with n-1 degrees of freedom. So $\frac{\overline{Y} \mu}{S_Y / \sqrt{n}} \sim t_{n-1}$.
- The **Student's t** distribution was developed by William Sealy Gosset. in the early 1900's. At that time he was an employee (chemist and statistician) of Arthur Guinness & Son, the brewery in Dublin, Ireland.

William Sealy Gosset

William Sealy Gosset (aka Student) in 1908

(age 32).

Born 13 June 1876

Canterbury, Kent, England

Died 16 October 1937 (aged 61)

Beaconsfield, Buckinghamshire,

England

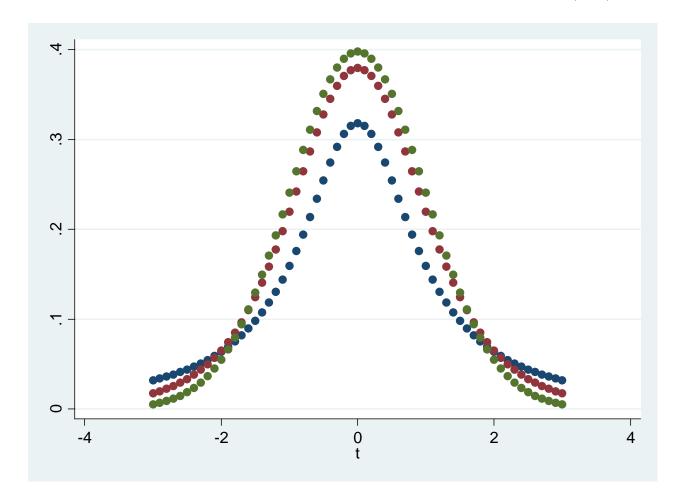
Other names Student

Alma mater New College, Oxford

Known for Student's t-distribution

The t distribution looks a lot like the Normal distribution

• Here are the density functions for three t distributions, with dof's = 1, 5 and 99. Notice that the density function is symmetric and bell-shaped, and centered around 0. As the *dofs* increase, probability shifts from the tails to the middle of the distribution. In the limit, and as *dofs* approach infinity, the t distribution approaches N(0,1).



The Cornerstone of Inference: *The t statistic*

The Cornerstone of Inference: The t statistic

- $\frac{\overline{Y} \mu}{S_Y / \sqrt{n}}$ is sometimes called the *t-statistic*, and it drives inference (when using the Sample
 - Mean to estimate the unknown mean, and the variance is unknown).
- Worth repeating! The t statistic drives inference!... and it has a t distribution with n-1 dofs.

Critical Values (with unknown variance)

- Here's a symmetric (confidence) interval estimator: $\left[\overline{Y} c \frac{S_Y}{\sqrt{n}}, \overline{Y} + c \frac{S_Y}{\sqrt{n}} \right]$ or $\left[\overline{Y} \pm c \frac{S_Y}{\sqrt{n}} \right]$ or $c \ge 0$ is a "critical" value, determined using the t distribution with n-1 dofs.
- As before, and after some algebra (t_{n-1} is a t distribution with n-1 dofs):

$$prob\left(\mu \in \left[\overline{Y} - c\frac{S_{Y}}{\sqrt{n}}, \overline{Y} + c\frac{S_{Y}}{\sqrt{n}}\right]\right) = prob\left(-c \le \frac{\overline{Y} - \mu}{\sigma/\sqrt{n}} \le c\right) = prob\left(-c \le t_{n-1} \le c\right).$$

• Given level of confidence and #dofs, we set the critical value c using the t_{n-1} distribution.

The Cornerstone of Inference: The t statistic, cont'd

- Before we had: $CI = [est \pm c \ stdevs]$... now we have: $CI = [est \pm c \ sterrs]$
- 90% Confidence Interval

• #dofs = 25:
$$\left[\overline{Y} \pm 1.71 \frac{S_Y}{\sqrt{n}} \right]$$

#dofs = infinite, N(0,1):
$$\left[\overline{Y} \pm 1.64 \frac{S_Y}{\sqrt{n}} \right]$$

95% Confidence Interval

• #dofs = 25:
$$\left[\overline{Y} \pm 2.06 \frac{S_Y}{\sqrt{n}} \right]$$

• #dofs = infinite, N(0,1):
$$\left[\overline{Y} \pm 1.96 \frac{S_Y}{\sqrt{n}} \right]$$

dofs	90.0%	92.5%	95.0%	97.5%	99.0%
5	2.02	2.24	2.57	3.16	4.03
10	1.81	1.99	2.23	2.63	3.17
15	1.75	1.91	2.13	2.49	2.95
20	1.72	1.88	2.09	2.42	2.85
25	1.71	1.86	2.06	2.38	2.79
30	1.70	1.84	2.04	2.36	2.75
50	1.68	1.82	2.01	2.31	2.68
75	1.67	1.81	1.99	2.29	2.64
100	1.66	1.80	1.98	2.28	2.63
infinite	1.64	1.78	1.96	2.24	2.58

